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Abstract

Let G = Rno
�
Rm be the Lie group which is the semi-direct product

of the two real vector groups Rn and Rm. Let L1(G) be its Banach
algebra. In this paper we give a classi�cation of all left ideals in L1(G):
Besides we prove the existence theorem for the algebraof all invariant
di¤erential operators on G. To this end we �nd a new interesting non
commutative algebra associated to the enveloping algebra U of G:
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1 Introduction.

1.1. Let G = Rn o
�
Rm be the Lie group of the semi-direct product of Rm

and Rn: Let C1(G4); D(G4); D0(G4); E 0(G4) be the space of C1� functions,
C1�functions with compact support, distributions and distributions with
compact support on G. Let U be the complexi�ed universal enveloping al-
gebra of the real Lie algebra g of G; which is canonically isomorphic to the
algebra of all distributions on G supported by f0g ; where 0 is the identity
element of G. For any u 2 U one can de�ne a di¤erential operator Pu on G
as follows:

Puf(x; t) = u � f(x; t)

=

Z
K

f((y; s)�1(x; t))u(y; s)dyds (1)

for any f 2 C1(G); where dyds = dyn:::dy2dy1dsm:::ds2ds1 is the right
Haar measure on G , y = (yn; yn�1; :::; y2; y1), x = (xn; xn�1; :::; x2; x1); t =
(tm; tm�1; :::; t2; t1); s = (sm; sm�1; :::; s2; s1) and � denotes the convolution
product on G: The mapping u ! Pu is an algebra isomorphism of U onto
the algebra of all invariant di¤erential operators on G. For more details see
[1; 6]
1.2. Let B = Rn � Rm be the commutative group of the direct product

of Rn by Rm. we denote also by U the complexi�ed enveloping algebra of
the real Lie algebra b of B: For every u 2 U , we can associate a di¤erential
operator Qu on B as follows

Quf(x; t) = u �c f(x; t)

=

Z
B

f((x� y; t� s)u(y; s)dyds (2)

for any f 2 C1(B); x 2 B; y 2 B; where �c signify the convolution prod-
uct on the real vector group B and dyds = dyn:::dy2dy1dsm:::ds2ds1 is the
Lebesgue measure on B: The mapping u 7! Qu is an algebra isomorphism
of U onto the algebra of all invariant di¤erential operators on B; which are
nothing but the algebra of di¤erential operator with constant coe¢ cients on
B: Far away from the representation theory and the quantum group (Hopf
algebra), our goal is the generalization of the commutative Fourier transform
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on Rn+m to the non commutative group G: This generalization helps us to
obtain the left ideals of the group algebra of G and to discover a new non
commutative algebra.

2 An Existence Theorem for the Algebra U

2.1. Let L = Rn � Rm � Rm be the group with law

(x; t; r)(y; s; q) = (x+ �(r)y; t+ s; r + q)

for all (x; t; r) 2 L and (y; s; q) 2 L: In this case the group G can be identi�ed
with the closed subgroup Rn�f0g�� Rm of L and B with the subgroup Rn�
Rm � f0gof L:

De�nition 2.1. For every f 2 C1(G), one can de�ne a function ef 2
C1(L) as follows: ef(x; t; r) = f(�(t)x; r + t) (3)

for all (x; t; r) 2 L: So every function  (x; r) on G extends uniquely as an
invariant function e (x; t; r) on L:

Remark 2.1. The function ef is invariant in the following sense:
ef(�(s)x; t� s; r + s) = ef(x; t; r) (4)

for any (x; t; r) 2 L and s 2 Rm:
Lemma 2.1. For every function F 2 C1(L) invariant in sense (4) and

for every u2U , we have

u � F (x; t; r) = u �c F (x; t; r) (5)

for every (x; t; r) 2 L, where � signi�es the convolution product on G with re-
spect the variables (x; r) and �csigni�es the commutative convolution product
on B with respect the variables (x; t):
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Proof: In fact we have

PuF (x; t; r) = u � F (x; t; r)

=

Z
G

F (y; s)�1(x; t; r)u(y; s)dyds

=

Z
G

F [(�(�s)(�y);�s)(x; t; r)]u(y; s)dyds

=

Z
G

F [�(�s)(x� y); t; r � s]u(y; s)dyds

=

Z
G

F [x� y; t� s; r]u(y; s)dyds = u �c F (x; t; r) = QuF (x; t; r)

where Pu and Qu are the invariant di¤erential operators on G and B respec-
tively.

Let S(G) be the Schwartz space of G which can be considered as the
Schwartz space of S(Rn�Rm); and let S 0(G) be the space of all tempered
distributions on G: If we consider the group G as a subgroup of L, thenef(x; s; t) 2 S(G) for s is �xed, and if we consider B as a subgroup of L; thenef(x; s; t) 2 S(B) for t �xed. This being so; denote by SE(L) the space of all
functions �(x; s; t) 2 C1(L) such that �(x; s; t) 2 S(G) for s is �xed, and
�(x; s; t) 2 S(B) for t is �xed. We equip SE(L) with the natural topology
de�ned by the seminomas:.

�! sup
(x;t)2G

jQ(x; t) P (D)�(x; s; t)j s fixed: (6)

�! sup
(x;s)2B

jR(x; s)H(D)�(x; s; t)j t fixed. (7)

where P; Q; R and H run over the family of all complex polynomials in
n + m variables. Let SIE(L) be the subspace of all functions F 2 SE(L);
which are invariant in sense (4), then we have the following result.

Theorem 2.1 Let u 2 U and Qu be the invariant di¤erential operator
on the group B; which is associated to u; then we have:
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(i) The mapping f 7! ef is a topological isomorphism of S(G) onto SIE(L)
.
(ii) The mapping F 7! QuF is a topological isomorphism of SIE(L) onto

its image, where Qu acts on the variables (x; s) 2 B:

Proof : (i) In fact � is continuous and the restriction mapping F 7! RF
on G is continuous from SIE(L) into S(G) that satis�es R� �= IdS(G) and
� �R = IdSIE(L); where IdS(G) (resp. IdSIE(L)) is the identity mapping of
S(G) (resp. SIE(L)) and G is considered as a subgroup of L: To prove(ii) we
refer to[9; P:313� 315] and his famous result that is:
"Any invariant di¤erential operator on B; is a topological isomorphism

of S(B) onto its image" From this result, we obtain:

Qu : SE(L)! SE(L) (8)

is a topological isomorphism and its restriction on SIE(L) is a topological
isomorphism of SIE(L) onto its image. Hence the lemma is proved.

In the following we will prove that every invariant di¤erential operator
on G = Rn � f0g�� Rm has a tempered fundamental solution. As in the
introduction, we will consider the two invariant di¤erential operators Pu and
Qu, the �rst on the group G = Rn � f0g � � Rm; and the second on the
commutative group B = Rn � Rm � f0g : Our main result is:
Theorem 2.2. Every nonzero invariant di¤erential operator Pu on G

associated to U is a topological isomorphism of SIE(L) onto its image.

Proof : By equation (5) we have for every u 2 U and F 2 SIE(L)

PuF (x; s; t) = u � F (x; s; t)
= u �c (x; s; t) = QuF (x; s; t) (9)

This shows that:
PuF (x; s; t) = QuF (x; s; t) (10)

for all (x; s; t) 2 L; where ? is the convolution product on G = Rn � f0g�
Rm and ?c is the convolution product on the group B = Rn � Rm � f0g :
By lemma 2:1 the mapping F 7! QuF is a topological isomorphism of SIE(L)
onto its image, then the mapping F 7! PuF is a topological isomorphism of
SIE(L) onto its image. Since

R(PuF )(x; s; t) = Pu(RF )(x; s; t) (11)
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so the following diagram is commutative:

SIE(L) Pu
�!

PuSIE(L)

�"# R # R

S(G) Pu
�!

PuS(G)

Hence the mapping F 7! PuF is a topological isomorphism of S(G) onto
its image.

Corollary 2.1. Every nonzero invariant di¤erential operator on G has
a tempered fundamental solution.
Proof : The transpose tPu of Pu is a continuous mapping of S 0(G) onto

S 0(G): This means that for every tempered distributionT on G there is a
tempered distribution E on G such that

PuE = T (12)

Indeed the Dirac measure � belongs to S 0(G):
If I is a subalgebra of L1(G); we denote by eI its image by the mapping

s. Let J = eI jB: Our main result is:
Theorem 2.2. Let I be a subalgebra of L1(G); then the following con-

ditions are equivalents.
(i) J = eI jM is an ideal in the Banach algebra L1(B):
(ii) I is a left ideal in the Banach algebra L1(G):
Proof: (i) implies (ii) Let I be a subspace of the space L1(M) such that

J = eIjM is an ideal in L1(M); then we have:

w �c eI jM(x; t; 0) � eI jM(x; t; 0) (13)

for any w 2 L1(M) and (x; t) 2 B, where

w �c eI jM(x; t; 0)
=

8<:
Z
M

e� [x� y; t� s; 0]w(y; s)dyds; � 2 L1(G)

9=;
6
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It shows that
w �c e� jM(x; t; 0) 2 eI jM(x; t; 0) (14)

for any e� 2 eI: Now let � be the mapping from L̂1(G)jB to L̂1(G)jG de�ned
by e�jB (x; t; 0)! �(e�jB )(x; 0; t) = e�jG(x; 0; t)
where L̂1(G) is the image of L1(G) by the mapping �; then we get

�(w �c e�jB)(x; 0; t)
= w � eF (x; 0; t) 2 �(eI jB)(x; 0; t)
= eI jG(x; 0; t) = I(x; t) (15)

It is clear that (ii) implies (i)
Corollary 2.2. Let I be a subalgebra of the space L1(G) and eI its image

by the mapping s such that J = eIjB is an ideal in L1(B); then the following
conditions are veri�ed.
(i) J is a closed ideal in the algebra L1(B) if and only if I is a left closed

ideal in the algebra L1(G):
(ii) J is a maximal ideal in the algebra L1(B) if and only if I is a left

maximal ideal in the algebra L1(G):
(iii) J is a prime ideal in the algebra L1(B) if and only if I is a left

prime ideal in the algebra L1(G):
(iv) J is a dense ideal in the algebra L1(B) if and only if I is a left

dense ideal in the algebra L1(G):

3 Fourier Transform and Plancherel Theorem

for G:

3. As in [3], we will de�ne the Fourier transform on G: The action � of the
group Rm on Rn de�nes a natural action noted �� of the dual group (Rm)�of
the group Rm ((Rm)� ' Rm) on (Rn)�; which is given by :

h��(t)(�); xi = h�; �(t)(x)i (16)

for any � = (�1; �2; :::; �n) 2 Rn , t = (t1; t2; :::; tm) 2 Rm and x = (x1; x2; :::; xn) 2
Rn; In following, we denote by t� (resp:tx) in the place of ��(t)(�)(resp:�(t)(x))

7
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De�nition 3.1. If f 2 S(G); one can de�ne its Fourier transform Ff
by :

Ff (�; �) =
Z
G

f(x; t) e� i (h�,xi+h�,ti) dxdt (17)

for any � = (�1; �2; :::; �n) 2 Rn; x = (x1; x2; :::; xn) 2 Rn; � = (�1; �2; :::; �m) 2
Rm and t = (t1; t2; :::; tm) 2 Rm, where h�,xi = �1x1 + �2x2 + ::: + �nxn and
h�,ti = �1t1 + �2t2 + ::: + �mtm : It is clear that Ff 2 S(Rn+m) and the
mapping f ! Ff is isomorphism of the topological vector space S(G)
onto S(Rn+m):

De�nition 3.2. If f 2 S(G), we de�ne the Fourier transform of its
invariant ef as follows

F( ef)(�; �; 0) = Z
L�Rm

ef(x; t; s)e� i (h�,xi+h�,ti) e� i h�,si dxdtdsd� (18)

where (�,s) 2 Rn+m and h�; si = �1s1 + �2s2 + :::+ �msm
Corollary 3.1. For every u 2 S(G), and f 2 S(G); we haveZ

Rm

F(_u � ef)(�; �; �)d� = F( ef)(�; �; 0)F(_u)(�; �) (19)

for any � = (�1; �2; :::; �n) 2 Rn; � = (�1; �2; :::; �m) 2 Rm and � =

(�1; �2; :::; �m) 2 Rm, where
_
u(x; t) = u(x; t)�1

Proof : By equation (9) we have

_
u � ef(x; t; r) == _

u �c ef(x; t; r) (20)

Applying the Fourier transform we getZ
Rm

F(_u � ef)(�; �; �)d� = F(_u �c ef)(�; �; 0) = F( ef)(�; �; 0)F(_u)(�; �)
Theorem 3.1.(Plancherel�s formula). For any f 2 L1(G)\ L2(G);

we get Z
G

jf(x; t)j2 dxdt =
Z

Rn+m

jFf(�; �)j2 d�d� (21)

8
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Proof: First, let
e_
f be the function de�ned bye_

f(x; t; r) = f((�(t)x; r + t)�1) (22)

then we have

f �
e_
f(0; 0; 0) =

Z
G

e_
f
�
(x; t)�1(0; 0; 0)

�
f(x; t)dxdt

=

Z
G

e_
f [�(�t)((�x) + (0)); 0; 0� t] f(x; t)dxdt

=

Z
G

e_
f [�(�t)(�x); 0;�t] f(x; t)dxdt

=

Z
G

_
f [�(�t)(�x);�t] f(x; t)dxdt =

Z
G

f(x; t)f(x; t)dxdt =

Z
G

jf(x; t)j2 dxdt

Second by (20), we obtain

f �
e_
f(0; 0; 0)

=

Z
Rn+2m

F(f �
e_
f)(�; �; �)d�d�d� =

Z
Rn+2m

F(f �c
e_
f)(�; �; �)d�d�d�

=

Z
Rn+m

F(
e_
f)(�; �; 0)F(f)(�; �)d�d� =

Z
Rn+m

F(f) (�; �)F(f)(�; �)d�d�

=

Z
Rn+m

jF(f)(�; �)j2 d�d� =
Z
G

jf(x; t)j2 dxdt (23)

which is the Plancherel�s formula on G: So the Fourier transform can be
extended to an isometry of L2(G) onto L2(Rn+m):
Corollary 3.2. In equation (23); replace the �rst f by g; we obtainZ

G

f(x; t)g(x; t)dxdt =

Z
Rn+m

F(f)(�; �)Fg(�; �)d�d� (24)

which is the Parseval formula on G:

9
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4 New Algebra

De�nition 4.1. Let u and v be two distributions belong the algebra U ; we
de�ne the dot product f � g as follows

u � v(x; t) = u � e_v(x; t; 0) = Z
Rm

u � e_v(x; t; s)e� i h�,sidsd�

for all u and v belong U , where

e_
v(x; t; s) =

_
v(tx; t+ s) = v[(tx; t+ s)�1]

from this de�nition results.
Corollary 4.1. For all u and v belong U , we have

u � v(x; t) = u �c bv(x; t)
where �c signi�es the commutative convolution product on the the real vector
group B = Rn � Rm and bv(x; t) = v(�x;�t)
Proof: Let u 2 U and v 2 U , then we get

u � v(x; t)

= u � e_v(x; t; 0)
=

Z
Rm

Z
Rn

Z
Rm

u � e_v(�r(x� y); t; s� r))e� i h�,sidsd�dydr

= u � e_v(x; t; 0) = Z
Rm

u � e_v((y; r)�1x; t; s))e� i h�,sidsd�

=

Z
Rm

Z
Rn

e_
v(�r(x� y); t; s� r))u(y; r)dydr

=

Z
Rm

Z
Rn

_
v((t� r)(x� y); t� r)u(y; r)dydr

=

Z
Rm

Z
Rn

v(y � x; r � t)u(y; r)dydr = u �c bv(x; t) (25)

10

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 
ISSN 2229-5518   

1430

IJSER © 2014 
http://www.ijser.org 

IJSER



Theorem 4.1. This dot product de�nes a new algebra on L1(G);which
is non commutative and non associative
Proof: Let u; v and w three elements from U , we obtain

u � v(x; t) = u �c bv(x; t)
=

Z
Rm

Z
Rn

v(y � x; r � t)u(y; r)dydr

and

v � u(x; t)
= v �c bu(x; t)
=

Z
Rm

Z
Rn

u(y � x; r � t)v(y; r)dydr

=

Z
Rm

Z
Rn

u(y; r)v(y + x; r + t)dydr

= v �c bu(x; t) 6= u �c bv(x; t) = u � v(x; t)

So, we get
u � v 6= u � v

u � (v � w) = u �c \(v � w) = u �c \(v �c bw)
= u �c (bv �c w) = u �c bv �c w

but

(u � v) � w = (u � v) �c bw = u �c bv �c bw
= u �c bv �c bw 6= u �c bv �c w

De�nition 4.2. Let Pol(Rn+m) be the symmetric algebra of Rn+m;which
consists of all polynomials in n+m variables:We supply Pol(Rn+m) by new
structure as follows

(P �Q)(�; �) = P (�; �)Q(��;��) (26)

Theorem 4.2.The product � makes Pol(Rn+m) non commutative and
non associative algebra.

11
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Prouf: In fact, for any P 2 Pol(Rn+m), Q 2 Pol(Rn+m) and R 2
Pol(Rn+m); we have

(P �Q)(�; �)
= P (�; �)Q(��;��)
= Q(��;��)P (�; �)
6= Q(�; �)P (��;��) = (Q � P )(�; �) (27)

and

P � (Q �R)(�; �)
= P (�; �)(Q �R)(��;��)
= P (�; �)(Q(��;��)R(�(��);�(��))
= P (�; �)(Q(��;��)R(�; �)
6= Q(�; �)P (��;��)R(��;��)
= (Q � P ) �R(�; �) (28)

Corollary 4.2. Let I be a subalgebra of U and eI its image by the mapping
s such that J = e�U jB is an ideal in �U; then the following conditions are
veri�ed.
(i) J is a closed ideal in the algebra �U if and only if I is a left closed

ideal in the algebra U :
(ii) J is a maximal ideal in the algebra �U if and only if I is a left

maximal ideal in the algebra U :
(iii) J is a prime ideal in the algebra �U if and only if I is a left prime

ideal in the algebra U :
(iv) J is a dense ideal in the algebra �U if and only if I is a left dense

ideal in the algebra U :
Corollary 4.3. The Fourier transform F is an algebra isomorphism

from the algebra ( �U , �) onto the algebra (Pol(Rn+m); �)
Proof: In fact we have

F(u � v)(�; �) = F(u �c bv)(�; �) = F(u)(�; �)F(bv)(�; �)
= Fu(�; �)Fv(��;��) = (Fu � Fv)(�; �) (29)

Corollary 4.2. The sub set Pol+(Rn+m) of all polynomials P with degree
of 2k, (k 2 N):is commutative sub algebra of Pol(Rn+m)

12
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Proof: Let P and Q be a polynomial belong Pol+(Rn+m);then we have

(P �Q)(�; �)
= P (�; �)Q(��;��) = P (�; �)Q(�; �)

= P (��;��)Q(�; �) = Q(�; �)P (��;��)
= (Q � P )(�; �)) (30)

Hence the proof of the corollary
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